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1 Introduction

It is generally assumed that democratic institutions are more likely to encourage innovative

activities that lead to higher productivity and, hence, higher economic growth than author-

itarian institutions (Acemoglu and Robinson 2012; Acemoglu et al. 2019; Wang et al. 2021).

However, does this conclusion still hold if we focus on data-intensive industries that heavily

rely on large amounts of data produced by an autocratic state?

In this paper, we develop an endogenous growth model with a myopic government to

illustrate the trade-off between surveillance and data availability in an autocracy. In tra-

ditional autocracies, surveillance and repression harm innovation, as these activities render

scientists and researchers less creative and productive. In modern informational autocracies

(see Guriev and Treisman 2022 for a conceptual discussion), however, surveillance can also

be used to gather and bundle large amounts of data, which can then be used as an input

– provided by the state – to accelerate innovation in data-intensive fields, such as artificial

intelligence (Beraja et al. 2022).

Recent contributions such as Cong et al. (2021) that focus on the growth aspects of a

data economy point out that consumers might suffer from data misuse or privacy violations

that come as a consequence of surveillance by the state. However, as we argue in this paper,

higher levels of government surveillance might also entail potential benefits for households,

such as lower crime rates, fewer terrorist attacks, or smoother government services. There

is evidence that in particular in autocracies, people accept a certain level of government

surveillance in exchange for more security and better government services (Kostka 2019;

Habich-Sobiegalla and Kostka 2022; see also Figure 1).

1



Figure 1: Approval for government surveillance and institutional environment

Note: Data on average approval is from wave 7 of the World Value Survey; to measure institutional quality
we take the polity2 indicator from https://www.systemicpeace.org/polityproject.html

A general finding of the recent literature on the data economy and economic growth is that

data are either underused due to their non-rivalry and property rights owned by consumers

(Jones and Tonetti 2020) or overused as a result of an inefficiently small R&D sector (Cong

et al. 2021). We complement this literature by showing that R&D misallocation tends to

zero, if households that own their data put a large weight on governmental surveillance

relative to private data misuse, i.e. the costs of surveillance are sufficiently low. We argue

that in the race for primacy in data-intense technologies between large democracies such as

the US and large autocracies such as China (see Lee 2018 for a discussion), the ability of a
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state to gather and bundle data at a sufficiently low social cost and use it as an input for

R&D could well play the role of a game changer, providing autocracies with an advantage

over democratic political systems.

Our paper and model speak to several different strands of literature. First, we present an

endogenous growth model that builds directly on Veldkamp (2005); Jones and Tonetti (2020);

Cong et al. (2021, 2022) and Beraja et al. (2022). Like in Cong et al. (2021) we let innovator

firms develop and supply differentiated varieties of data-intensive goods, such as algorithms.

These goods are used to produce the final good. In contrast to Veldkamp (2005); Jones

and Tonetti (2020); Cong et al. (2021) and Cong et al. (2022), we also introduce a myopic

government that produces governmental data as a by-product of surveillance and assume

that households derive positive utility from surveillance. Hence, we have governmental as

well as private data in the economy.

Second, in contrast to Beraja et al. (2022), the government is self-interested in that it tries

to secure its power. For this reason, it raises taxes to finance surveillance. One major point

this paper makes is that from a socially optimal point of view, as in Cong et al. (2021), data

are overused at the expense of R&D labor. The misallocation of R&D labor is particularly

pronounced if the degree of knowledge spillover is large and/or the importance of data for

the development of new algorithms is low. However, we show that governmental surveillance

can moderate this distortion towards zero. This finding complements the work of Cong et al.

(2021). Another finding is that rent-seeking governments tend to set a tax above zero. For a

reasonable parameter calibration, this accelerates the negative impact of underemployment

in the R&D sector, which is still present due to data overuse.

Third, a potential productivity impact of governmental surveillance relative to output on

the growth rate of algorithms is only transitory, but has no long-run effects on the growth

rate and labor market allocations. More surveillance reduces creativity, but generates new

data, thereby increasing output via new algorithms that in turn contribute to productivity
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in the R&D sector. We show that in the long run, both effects exactly cancel each other out,

as aggregate governmental surveillance grows at the same rate as aggregate output.

Our paper is organized as follows. Section 2 motivates the paper, by providing a brief

overview of the existing literature on the effect of democratic and authoritarian political in-

stitutions on innovation, and by outlining how recent breakthroughs in big data technologies

such as artificial intelligence may have changed the trade-off between authoritarian control

and innovation. Section 3 presents our baseline model. Section 4 introduces the social plan-

ner’s problem, and section 5 the action of the rent-seeking government. Section 6 performs

a calibration exercise to illustrate the steady-stage labor market allocations, and section 7

concludes.

2 Motivation

2.1 Democracy, Autocracy and Innovation

Theoretically and empirically, the literature on the effect of political institutions on economic

growth remains divided. While there is growing support for the idea that democracy is good

for growth (Jamali et al. 2007; Acemoglu and Robinson 2012; Knutsen 2013, 2015; Acemoglu

et al. 2019), other studies find ambiguous or no effects (Olson 1982; Libman 2012; Piatek

et al. 2013; Murtin and Wacziarg 2014; Pozuelo et al. 2016; Truex 2017; Ghardallou and

Sridi 2020).

A subset of this literature studies innovation as one possible mechanism why democracies

might outperform autocracies (Huang and Xu 1999; Carayannis and Campbell 2014; Knut-

sen 2015; Silve and Plekhanov 2018; Tang and Tang 2018; see Gao et al. 2017 for a dissenting

view). One potential channel is the effect of democracy on human capital, which in turn can

positively affect innovation (Tebaldi and Elmslie 2008; Klomp and de Haan 2012). Other

studies find a positive effect of political freedom on innovation in high-tech sectors, while the

effect remains ambiguous or negative for low-tech sectors (Aghion et al. 2007; Zuazu 2019).
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With respect to natural resources, the effect seems clearer, as they seems to have a negative

effect on innovation in autocracies, but not in democracies (Rosenberg and Tarasenko 2020).

Finally, a literature based on case studies argues that, even though on average authoritarian

regimes lag behind democracies when it comes to generating innovation, sometimes pock-

ets of competence exist where autocracies were able to successfully compete with liberal

democracies (Graham 1987, 1993; Stokes 2000; Josephson 2005; Gomez and Canales 2015).

Overall, the existing literature suggests the long-term effect of authoritarian institutions on

innovation to be either negative or ambiguous.

Our paper introduces two innovations to this literature. First, we focus on highly digitized

autocracies, i.e. authoritarian regimes that use sophisticated methods to censor, monitor,

and control the internet and other sources of information (King et al. 2013, 2014; Shad-

mehr and Bernhardt 2015; Roberts 2018; Strittmatter 2020; Guriev and Treisman 2022),

rather than relying on repression and more traditional methods of control. We show that

surveillance in such autocracies still introduces distortions for both scientific research and

the economy in general, and thus comes at an economic cost. However, the fact that large

amounts of data are gathered, bundled and made available in a centralized way can also

offer potential advantages, in particular with respect to research in data-intense fields such

as deep learning. Building on this trade-off, our second innovation is to investigate how

informational autocracies fare with respect to research and innovation in technologies that

rely on large amounts of data. Section 2.2 briefly introduces the specific features of data-

intense technologies, and explains why they might have the potential to change the way

authoritarian institutions affect innovation.

2.2 Artificial Intelligence and Deep Learning

In 2006, two publications on recursive learning in many-layered neuronal networks gave a

boost to research in the field of machine learning (Hinton and Salakhutdinov 2006; Hinton

et al. 2006). Building on this breakthrough, researchers concentrated on developing algo-
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rithms that were able to learn from large amounts of data, without giving the algorithm any

detailed previous instructions. Instead, the algorithm relies solely on artificial multi-layered

neural networks, which in their functioning resemble the neural networks of the human brain.

After some time, these algorithms were able to classify and learn from large amounts of data

with high levels of precision (Krizhevsky et al. 2012; He et al. 2016). Importantly, the

amount of data available and the depth of the network (measured by the number of layers)

are positively correlated with the ability of the algorithm to learn and self-improve, hence

deep learning (Hey 2009; Domingos 2015). It is this feature which lead some researchers

to describe the quantity of data available for researchers as the “new oil” of the knowledge

economies of the 21st century (Spitz 2017; Lee 2018; Taffel 2023).

Once the initial breakthrough in machine learning had been made, the new technology

was rapidly applied to various fields, such as image recognition, natural language processing,

toxicology, medical image analysis, management, bioinformatics, financial fraud detection,

as well as surveillance and military technologies. For our argument it is important that in

the application phase of these technologies, the type of cutting-edge research abilities where

US elite-universities still have an absolute advantage have become relatively less impor-

tant. Instead, the training and incremental improvement of existing algorithms with large

amounts of data has become central to advance innovation in these sectors (Agrawal et al.

2018; Cockburn et al. 2018; Beraja et al. 2021). Such processes can also be carried out by

well-qualified specialists, even if they are not competing at the absolute frontier of global

knowledge production.

Figure 2 illustrates this point, and shows that with respect to the overall amount of AI-

related publications (as measured by the total number of publications in the field of AI that

are indexed by Web of Science), China has already an advantage over all other countries

in the world. We take this number as an indication that already today, China is leading

when it comes to the overall amount of researchers that are able to do applied work in the
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field. When it comes to top-level publications (proxied by the Nature index of high-quality

publications in AI), however, the United States are still ahead (Wagner et al. 2020, 2022).

Figure 2: Quality vs Quantity of Publications in the Field of AI

It is thus with respect to the training of existing technology with large amounts of data

that autocracies might have an advantage. First, authoritarian states are using surveillance

systems that can gather larger amounts of data about the behavior and characteristics of

the population than most democracies (Qiang 2019; Strittmatter 2020), despite surveillance

also playing a role in many democratic countries (Zuboff 2019). Second, as a result of less

stringent privacy laws, this data can be shared by the government with private firms, similar

to a subsidy, providing them with an advantage over firms in democratic political contexts

(Jones and Tonetti 2020; Beraja et al. 2021, 2022, 2023). Third, population size does matter,

as in states with a larger population the amount of data that can be provided as input is
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also larger. Finally, digital technology penetration through a society is playing a role as

well. The larger is the number of digital services and devices that are used, the more data is

generated, and the higher the amount of data that can be collected by the government. In

the next section, we introduce a simple model to illustrate how these specific features can

influence the speed of innovation in a digital autocracy.

3 Baseline Model

3.1 Households

Our economy is populated with a fixed number of infinitely-lived, homogeneous represen-

tative households. Each household has L(t) = L(0) exp[nt] members, with n0 denoting the

exogenous growth rate of the population. Further, L(0) = L0 > 0. In every period, each

member inelastically supplies one unit of labor per time unit. We normalize the number of

households to one. We further follow Veldkamp (2005) and Jones and Tonetti (2020) and

assume that consumers produce data as a by-product of consumption.

These data can be sold to the research sector (Jones and Tonetti 2020). However, data

commonly comprises personal information and, thus, the potential misuse of data leads to a

disutility that households consider when they sell their data.

The instantaneous utility function introduced below captures in a stylized manner the

utility costs and benefits of state surveillance. The household’s instantaneous utility function

u(t) is given by

u(t) =

[
[G(t)εc(t)1−ε]1−θ

1− θ
− ι[dc(t)κG(t)1−κ]χ

]
, (1)

with θ > 0, κ ∈ (0, 1] and θ 6= 1 as the magnitude of the elasticity of marginal utility of

consumption. χ parameterizes the weighted average of disutility of data misuse (with weight

κ) or privacy violation due to governmental surveillance G(t) weighted with the parameter

1− κ. ε ∈ [0, 1) weights the utility derived from governmental surveillance, G(t) relative to

private consumption, c(t). For the special case that κ = ε = 1, a household does not derive
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utility and disutility from governmental surveillance. While Cong et al. (2021) focus on this

special case (κ = ε = 1), our paper goes further by focusing explicitly on governmental

surveillance activities.

Beyond being consistent with a balanced growth path, (1) captures in a stylized manner

the utility costs and benefits of surveillance. More surveillance leads to more (subjective)

security and stability, such as lower crime rates and fewer terrorists attacks, but, on the

other hand, restricts civil liberties. Thus, as long as [G(t)εc1−ε]1−θε < ιχ[dc(t)
κG(t)1−κ]χ, the

marginal utility of G turns out to be negative, as the marginal costs of surveillance exceeds

the marginal benefits in utility terms. In the following, we impose that χ > 1 in order to

guarantee the convexity of disutility in (1).

Given θ > 0 and ρ > 0, the representative household’s problem is to choose a plan

{c(t), dc(t)}∞t=0 so as to

max
{c(t),dc(t)}

∫ ∞
0

exp[−(ρ− n)t]

[
[G(t)εc(t)1−ε]1−θ

1− θ
− ι[dc(t)κG(t)1−κ]χ

]
dt (2)

subject to

c(t) ≥ 0 (3)

dc(t) ≥ 0 (4)

ȧ(t) = (r(t)− n)a(t) + w(t) + pdc(t)dc(t)− c(t) (5)

ḋc(t)

dc(t)
≤ ċ(t)

c(t)
,
ḋg(t)

dg(t)
≤ Ġ(t)

G(t)
(6)

and the No-Ponzi game condition

lim
t⇒∞

a(t) exp[−
∫ t

0

(r(s)− n)ds] ≥ 0. (7)

Here, r(t) is the risk-free interest rate, a(t) is the per capita financial wealth that consists

of raw capital and perpetual patents as will become clearer below. Moreover, the constraint
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(38) requires that the growth rate of data is bounded by the growth rate of consumption.

Restriction (38) also implies that data is a by-product of consumption: dc(t) ≤ ζc(t) for some

arbitrary constant ζ ∈ (0, 1) (see Cong et al. (2021)). As usual, ρ is the consumer’s subjective

discount rate, while pdc(t) shows the price per data unit dc(t) that can be realized by selling

data (as a by-product of consumption) to intermediate good producers (see Veldkamp (2005)

or Cong et al. (2021)). w(t) is the wage rate for labor supply.

Solving the optimization problem delivers the Euler equations for consumption (8) and

data (9), respectively as

ċ(t)

c(t)
=

1

θ̃

(
r − n− ρ+ (1− θ)εĠ(t)

G(t)

)
(8)

˙pc(t)

pc(t)
+ (1− χκ)

ḋc(t)

dc(t)
− (1− κ)χ

Ġ(t)

G(t)
= r − n− ρ, (9)

and the transversality condition (tvc)

lim
t⇒∞

a(t) exp[−
∫ t

0

(r(s)− n)ds] = 0. (10)

This follows directly from applying Pontryagin’s maximum principle to the problem.

Note further that θ̃ ≡ [1 − (1 − θ)(1 − ε)] denotes the effective rate of the intertemporal

elasticity of substitution. Note that for ε = 0, we have θ̃ = θ.

3.2 Surveillance and the Government

In order to keep the model analytically tractable, we model the governmental sector as

simple as possible. We assume that a fraction m(t) ∈ (0, 1) of governmental surveillance

activities G(t) generates aggregate governmental data Dg(t) = m(t)G(t) = dg(t)L(t). We

allow m(t) to decrease (or 1
m(t)

to increase) over time to include the possibility that gov-

ernmental surveillance becomes more efficient over time, in the sense that more data can

be generated with a given level of surveillance activities due to technological improvements.
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Governmental surveillance activities are financed via two sources. First, the government im-

poses a profit tax on final goods producers with a constant tax rate τ ∈ (0, 1). Second, the

government exclusively sells data-sets dg(t) to the research sector (where data firms operate)

at price pdg(t). For simplicity, we do not allow data sharing across data firms. Moreover, the

government cannot lend or borrow. The budget is thus always balanced. Taken together,

the governmental constraint reads as

G(t) = τY (t) + pdg(t)dg(t)L(t). (11)

From equation (11), an implicit assumption is that governmental data are not shareable

across firms. The reasons for this assumption are twofold. First, we focus on the normative

and positive implications of data shareability within a firm.1 Second, as shown by (Beraja

et al. (2022)), from an empirical perspective this case is more relevant for authoritarian

regimes. Like in Beraja et al. (2022)), governments collect their own data and sell them to

a specific firm for analysis, while simultaneously excluding other firms from using the same

data.

3.3 Production Side of the Economy

3.3.1 Final Goods Sector

The production side of our economy borrows elements from Romer (1990) and Jones (1995).

The final goods sector produces the consumption aggregate with labor and intermediate

goods as factor inputs in an environment with perfect competition. The production of the

final goods sector is written as

Y (t) = LY (t)1−α
∫ N(t)

0

xαi,tdi, (12)

1The implications of non-rival data have already been studied by Jones and Tonetti (2020), although we
have to point out that data shareability across firms would strengthen the importance of governmental
surveillance data in our model.
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where Y (t) indicates the output of the consumption aggregate. LY (t) represents labor

used in the final goods production, and N(t) is the technological frontier. xi,t is the amount

of a specific, i indexed intermediate good xi,t (e.g. a machine for instance) that is used in

final goods production at time t. α ∈ (0, 1) indicates the share of intermediate inputs.

Let pi(t) be the price paid for the ith intermediate good. Profit maximization together

with the assumption of perfect competition implies that factors are paid their marginal

products:

wY (t) = (1− τ)(1− α)
Y (t)

LY (t)
, (13)

pi(t) = (1− τ)αLY (t)1−αxα−1i,t , (14)

where wi stands for the wage rate paid in the final goods sector.

3.3.2 Intermediate Goods Sector

From (14), we obtain the downward-sloping demand function of intermediate goods as:

xi,t = LY (t)

(
α(1− τ)

pi(t)

) 1
1−α

(15)

In the spirit of Dixit and Stiglitz (1977), we assume that the intermediate goods sector

is monopolistically competitive. This implies that each firm produces exactly one of the

differentiated intermediate goods. For production, each firm producing intermediate goods

has to purchase one intermediate goods-specific blueprint from the R&D sector that will be

introduced below. After the intermediate goods producer has purchased the blueprint, she is

able to convert one unit of capital into one unit of intermediate good: ki,t = xi,t. The costs

of the blueprint are the fixed costs for each firm. Moreover, the assumption of free entry

ensures that fixed costs equal operating profits. This, in turn, implies that overall profits are

zero. We assume that the marginal and average costs of production are constant. Hence,
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the operating profit’s flow is given by

πi,t = (pi,t − r)ki,t

= ((1− τ)αLY (t)1−αxα−1i,t − r(t))ki,t (16)

Profit maximization yields the usual markup pricing:

pi,t = p(t) =
r(t)

α
, (17)

where 1
α
> 1 is the markup over marginal costs. Using (17) in (14), we find that

xi,t =

[
(1− τ)α2

r(t)

]( 1
1−α)

LY (t) ≡ x(t), (18)

which implies that the quantity of intermediate goods production is independent of the

variety. Thus, using (17) in (15), the aggregate capital stock is simply K(t) =
∫ N
0
xi,tdi =

N(t)x(t), so that (12) can be written as

Y (t) = LY (t)N(t)

[
(1− τ)α2

r(t)

]( α
1−α)

. (19)

Inspecting (19) reveals that final output decreases with an increasing profit tax rate τ .

3.3.3 Data Firms in the Research Sector

The novelty of our paper is that private as well as governmental data enter R&D when new

blueprints are developed. This distinguishes our contribution from Jones and Tonetti (2020)

or Beraja et al. (2022), where data only enter directly into the production of final goods.

These contributions implicitly focus on data-driven industries by assuming that exclusively

data intermediate goods are used for final good production. While this seems reasonable

for industries such as Google or Facebook, more traditional industries still use non-data
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intermediate goods, where data can be used to improve the quality of such intermediate

goods. As we focus on surveillance as well, our paper is also different from Cong et al. (2021,

2022), who neglect data from government surveillance as a potential driver of innovation.

In our paper, data firms operate in the R&D sector that employs scientists, LN(t) as well

as a weighted average of private and governmental data. Hence, total data employed in the

research sector at time t to discover new blueprints (or algorithms) is given by

D(t) ≡ [Dc(t)]
β[Dg(t)]

1−β = (dc)
β(dg)

1−βL(t), (20)

with weighting factor β ∈ [0, 1]. Two points in (20) are worth mentioning. First, if β = 1,

the research sector only employs private data, i.e. D(t) = Dc(t) (see Cong et al. (2021) for

instance). Second, there is a scale effect. The size of aggregate data D(t) depends on the

size of the population L(t), which means that more people (larger countries) produce more

private as well as governmental data.

The aggregate technological frontier evolves according to:

Ṅ(t) = η̄N(t)φ(D(t))ξLN(t)1−ξ, (21)

where η̄ > 0 is an efficiency term of innovation. ξ ∈ (0, 1) represents the relative contribu-

tion of data D(t) and R&D scientists LN(t) in the production process of new varieties (or

algorithms) N(t), while 0 < φ < 1 captures the “standing on the shoulders of giants” effect

of technology on the change in technology which can be interpreted as knowledge spillovers.2

We further assume that surveillance reduces the efficiency of innovation. This can be

justified by the underlying psychological pressure of the government on researchers. Author-

itarian surveillance entails targeted repression and makes citizens adhere to social or legal

norms (Roberts 2018). Repression, however, also disincentives innovation activities on the

2For φ < 0, we have the “fishing out effect” effect, i.e. it is harder to find a new blueprint if the number of
already discovered blueprints N(t) is very large. For φ = 0, both effects offset each other.
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entrepreneurial level (Acemoglu and Robinson 2012) and on the level of the individual, where

it hinders the creativity that is crucial in the innovation process (Karpa et al. 2022). On

the other hand, more governmental surveillance also implies more data and more varieties

that can in turn enhance research productivity. To capture this idea in a parsimonious way,

in contrast to Cong et al. (2021) or Cong et al. (2022), the research productivity term is

endogenously explained by governmental surveillance activities G(t) relative to output Y (t):

η(t) = η̄

(
G(t)

Y (t)

)−ω
= η̄

(
dg(t)L(t)

m(t)Y (t)

)−ω
, (22)

with ω ∈ [0, 1) that reflects the strength of negative influence of surveillance activities on

research productivity. m(t) is an exogenously growing (with constant rate) efficiency pa-

rameter. Because researchers are socialized in a given regime, they take the value of η as

given by neglecting the negative influence of surveillance activities. For ω = 0, (5) collapse

to η(t) = η̄, i.e. an exogenously given and time-independent efficiency term of innovation.

We assume that data firms develop new blueprints for new varieties of capital goods

under conditions of free market entry and perfect competition. Hence, data firms enter as

long as marginal benefits equals marginal costs of production. In other words, data firms

maximize their profits πN(t) according to

max
{LN (t),dc(t),dg(t)}

πN(t) = pN(t)η(t)N(t)φ(D(t))ξLN(t)1−ξ − wN(t)LN(t)

−pdc(t)dc(t)L(t)− pdg(t)dg(t)L(t), (23)

where pN(t) represents the price of a blueprint. The first order conditions pin down the

R&D sector’s demand function of data from private households and government as well as

the wages in the research sector. The free-entry conditions are:
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pN(t)(1− ξ)ηN(t)φ(D(t))ξLN(t)−ξ = wN(t), (24)

pN(t)βξη(t)Nφ(t)(D(t))ξ−1
D(t)

dc(t)
LN(t)1−ξ = pdc(t)L(t), (25)

pN(t)(1− β)ξη(t)N(t)φ(D(t))ξ−1
D(t)

dg(t)
LN(t)1−ξ = pdg(t)L(t). (26)

3.4 Equilibrium

A competitive equilibrium is a set of allocations {c(t), Yt, a(t), {xi,t}i∈[0,Nt], dc(t), dg(t), LY (t),

LN(t), L(t), N(t), G(t), Dc(t), Dg(t)}∞t=0, a price system {w(t), rt, {pi,t}i∈[0,Nt], pcd(t), pgd(t),

PN(t)} and an imposed policy scalar {τ} such that for all t:

(i) {c(t)} and {a(t)} solve the household problem (37)-(7), {xi,t}i∈[0,Nt] and {LY (t)} solve

the final goods producer problem, {pi,t}i∈[0,Nt] and {πi,t}i∈[0,Nt] solve the intermediate

goods producers problem for all i ∈ [0, Nt], {LN(t), dc(t), dg(t)} solve the data firm’s

R&D problem (23).

(ii) {w(t)} clears the labor market LN(t)+LY (t) = L(t), {r(t)} clears the asset market with

a(t)L(t) = N(t)pN(t), {pgd(t)} clears the surveillance data market dg(t)L(t) = Dg(t),

{pcd(t)} clears the consumption data market dc(t)L(t) = Dc(t), {N(t)} follows from

the R&D production function (21). G(t) follows from {τ, Y (t), pdg(t), dg(t), L(t)}. In

every point in time, the governmental budget (11) is balanced.

3.5 Governmental Surveillance and Growth: A Balanced Growth Path Char-

acterisation

In this section, we solve the model along the balanced growth path (bgp). A bgp is a

trajectory such that all variables grow at a constant exponential (but not necessarily equal)

rate forever. In Appendix 1, we derive the growth rate for the decentralized economy on

the bgp. This growth rate is different for private and governmental data provision. We
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summarize this finding in the following proposition:

Proposition 1. As in Jones (1995), the decentralized economy does not exhibit a scale

effet. As shown in Appendix 8.2, the bgp growth rates for y(t) ≡ Y (t)
L(t)

, N(t), c(t) and

g(t) ≡ G(t)
L(t)

are given by

ĝ =

{
ξ[(1− θ)ε− (1− κ)χ] + κχ

ξ[θ − 1 + χ(1− κ)] + (1− φ)χκ

}
n. (27)

The bgp growth rates for private and public data sets dc(t) and dg(t), respectively, are given

by

ĝd =
1− φ
ξ

ĝ − n

ξ

=

{
[1− θ][1 + ε(1− φ)]− (1− κ)(2− φ)]

ξ[θ − 1 + χ(1− κ)] + (1− φ)χκ

}
n. (28)

Remark 1. Cong et al. (2021): For the special case that the government is absent,

i.e. ε = ω = 0 and κ = 1, the bgp growth rate for the decentralized economy collapses

to ĝ|ε=ω=0,κ=1 = χ
ξ(θ−1)+χ(1−φ) , while the bgp growth rate of data-sets reads as ĝ|ε=ω=0,κ=1 =

1−θ
ξ(θ−1)+χ(1−φ) . For the special case that the government is absent and, additionally, preferences

are logarithmic (θ = 1), the bgp growth rate collapses to ĝ = n
1−θ . This growth rate is

larger compared to Jones (1995) as in our setting the diminishing returns of research labor

(1− ξ < 1) are directly offset by data usage within the R&D sector.

Remark 2. Appendix 8.2 shows that for the parameter restriction

χ > χ̂ ≡ ε(θ − 1)ξ

κ− (1− κ)ξ
(29)

the bgp growth rate (27) exists and is positive, while the bgp growth rate for data sets, (28),
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exists but is negative.

In other words, (29) ensures the convexity of the disutility term χ in the representa-

tive household’s utility function originating from private data production and governmental

surveillance. In contrast to Cong et al. (2021), the restriction is more severe due to the

presence of government surveillance activities affecting directly positively (ξε) as well as

negatively ((1− κ)ξ) the representative household’s utility function.

Proposition 2. As shown in Appendix 8.3, for the decentralized economy, on the bgp,

the share of employed R&D is constant and reads as

l̂n(t) ≡
ˆLN(t)

L(t)
= 1− l̂y(t) = l̂n =

α(1− ξ)[
g∗d+n−g∗

g∗

]
ε(θ − 1) + θ + α(1− ξ) + ρ

g∗

∈ (0, 1), (30)

where g∗ is given by (27) and g∗d by (28) and 1− ξ > φ. Note that the ladder condition

restricts the knowledge spillover effect in order to ensure that lr ∈ (0, 1) for the empirically

plausible value θ > 1 (see Jones (2016)).

Further, (30) is independent of the tax rate because its positive effect (lower wages in the

final goods sector makes employment in the R&D sector more attractive) and the negative

effect (higher taxes in the final goods sector reduces the demand for intermediate goods (see

(18)), thus reduces profits in the intermediate good sector and, hence, leads to lower wages

in the R&D sector) via the intermediate goods cancel each other.

3.6 Comparative Statics

Before we proceed with deriving the social planner’s problem, it is worth deriving some

insights from comparative statics.

Proposition 3. For θ > 1, the bgp growth rate (27) decreases with the increasing im-

portance of data usage in the R&D sector, ξ, while the effect of the increasing importance

of dis-utility stemming from private data usage or governmental surveillance, χ on the bgp
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is undetermined. Finally, if the importance of utility from governmental surveillance ε in-

creases, households prefer lower bgp growth rates. In formal terms we have:

∂ĝ

∂ξ
=

{
[(1− θ)(1 + ε(1− φ))− (1− κ)(2− φ)χ]nκχ

ξ[θ − 1 + χ(1− κ)] + (1− φ)χκ]2

}
< 0, (31)

∂ĝ

∂χ
=

{
(θ − 1)[κ(1 + ε(1− φ))− ξ(1− ε)(1− κ)]nξ

[ξ(θ − 1 + χ(1− κ))− (1− φ)χκ]2

}
S 0, (32)

∂ĝ

∂ε
=

{
(1− θ)nξ

ξ[θ − 1 + χ(1− κ)]− (1− φ)χκ]

}
< 0. (33)

Some comments regarding Proposition 3 are in order. First, from inspecting (31) we

see that an increase of ξ that mirrors the importance of data usage in the innovation of

new data algorithms decreases the bgp growth rate. This counter-intuitive result can be

explained with a general equilibrium effect. An increase of ξ increases the usage of data

at the cost of R&D employment in the production of new algorithms. To produce more

data in the present, surveillance and/or private consumption in the present has to go up at

the cost of future consumption. Alternatively, households might invest in new algorithms

that increase their future consumption potential and also produce more future data as a

by-product. Due to the tendency of consumption smoothing (note that θ > 1), the first

effect dominates the second, and, hence, households require a lower bgp growth rate if ξ

goes up.3 Next, (32) for θ > 1 shows that if the importance of dis-utility from private

data use and/or governmental surveillance increases, households accept lower bgp growth

rates if the negative impact of governmental surveillance on utility is sufficiently small, i.e.

if 1 − κ < (1−ε)ξ
1+ξ(1−ε)+ε(1−φ) . This finding contrasts and complements recent studies such as

Cong et al. (2021), which propose that consumers have to be compensated with higher bgp

growth rates for the disutility from private data use. In our setting, where households also

3Cong et al. (2021) state on p. 6484 that an increase of ξ increases the gbp growth rate if θ > 1. We believe
that this is a typo as their bgp growth rate in fact decreases if ξ goes up, provided that the consumption
smoothing motive is sufficiently large, i.e. θ > 1.
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derive positive utility from surveillance, i.e. a higher subjective feeling of security, under some

conditions, in equilibrium smaller growth rates are required even if governmental surveillance

as well as private data misuse is present. Finally, from (33) we observe that an increase of

ε reduces the bgp growth rate as, unsurprisingly, households accept lower bgp growth rates

if the importance of the utility-enhancing effect of governmental surveillance increases and

the consumption smoothing motive is sufficiently pronounced.

4 The Social Planner’s Problem

The equilibrium characterized in the decentralized economy is not socially optimal due to,

(i) monopolistic competition, (ii) knowledge spillovers in the R&D production function as

well as a (iii) reduction of R&D productivity due to government surveillance that is taken

as given by the agents as reflected by (21) and (5).

In turn, a benevolent social planner maximizes the utility of the representative house-

hold subject to the rouse constraint. The latter requires that aggregate net output Y (t) −∫ N(t)

0
r(t)xi,tdi equals aggregate consumption and governmental surveillance expenditures,

G(t):

C(t) = c(t)L(t) = Y (t)−
∫ N(t)

0

r(t)xi,tdi−G(t), (34)

where G(t) = dg(t)L(t)

m(t)
. Given N(t), the social planner solves a static optimization problem

that is at each point in time t she chooses the optimal level of intermediate goods given N(t).

In other words, she optimizes the following resource constraint:

C(t) +G(t) = LY (t)1−α
∫ N(t)

0

xαi,tdi−
∫ N(t)

0

r(t)xi,tdi ≡ Yn(t). (35)

From this optimization problem, we derive the optimal net output, Yn(t) as:

Yn(t) = (1− α)LY (t)N(t)

(
α

r(t)

) α
1−α

. (36)
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Unsurprisingly, given the same level of technology and labor input, compared to the decen-

tralized economy, the output is larger. The difference is due to monopolistic competition in

the intermediate goods sector in the decentralized economy. Given (36), the social planer

solves the following problem:

max
{c(t),dc(t),G(t),ly(t)}

∫ ∞
0

exp[−(ρ− n)t]

[
[G(t)εc(t)1−ε]1−θ

1− θ
− ι[dc(t)κG(t)1−κ]χ

]
dt

subject to

c(t) ≥ 0,

G(t) ≥ 0,

dc(t) ≥ 0,

m(t) ≥ 0,

Ṅ(t) = η̄

[
G(t)

Yn(t)

]−ω
N(t)φ

[
(dc(t)L(t))β (G(t)m(t))1−β

]ξ
LN(t)1−ξ, (37)

ḋc(t)

dc(t)
≤ ċ(t)

c(t)
,
ḋg(t)

dg(t)
≤ Ġ(t)

G(t)

c(t) +
G(t)

L(t)
= (1− α)ly(t)N(t)

(
α

r(t)

) α
1−α

, (38)

ly(t) + ln(t) = 1. (39)

Equation (39) represents the labor market clearing condition, while equation (38) shows

the simplified resource constraint. After solving the social planner’s problem in Appendix

8.4, we can summarize our main findings with the following proposition:

Proposition 4. In Appendix 8.4 it is shown that the bgp growth rates coincide with the

bgp growth rates for the decentralized economy presented in Proposition 1. In other words,
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we have

g∗ = ĝ ≤ n[ξ(1− (1− κ)χ)− χκ]− ξρ
ξ[1− φ− χ(1− κ)]− κ(1− φ)χ

. (40)

One remark regarding the last (in)equality shown in Proposition 3 is in order. Although

the social optimal and decentral bgp growth rates are identical, nevertheless we have to

impose an upper limit on the social optimal growth rate in order to guarantee that the

fraction of R&D workers does not exceed the value of one.

From an intuitive point of view, the result presented in Proposition 4 directly relates to

Jones (1995), who shows that a focus on growth rates per se is not sufficient to fully describe

a country’s economic performance.4 For instance, an increase of governmental surveillance

decreases the efficiency of R&D, thus leading to an immediate reduction of the growth of new

ideas. However, more surveillance implies more governmental data that in turn can be used

to generate new ideas that manifest themselves in new intermediate goods and an increase

in the final output. Hence, in the medium run, growth rates return to the initial growth

rates if the positive effect of additional data exactly offsets the negative effect of surveillance

on creativity, as it is the case in our model.5

However, as we show below, we have level effects, i.e. the social optimal fraction of labor

employed in the R&D sector is larger compared to the fraction of R&D workers employed

in the decentralized economy. This, in turn, leads to a sub-optimal overuse of data in the

decentralized economy. We show this in Proposition 5:

4The not surprising finding that the bgp growth rates between the decentralized and centralized economy
coincide is also made by e.g. Cong et al. (2021) and Jones and Tonetti (2020), who both use a semi-
endogenous growth setting with data usage.

5This can be seen directly inspecting equation (21) together with (5). As on the bgp, G(t) grows with the
same rate as Y (t), the fraction G(t)

Y (t) remains constant. Hence on the bgp, η in equation (5) does not grow.
Hence, off the bgp, we expect transitional dynamics of η(t), which dynamics is governed by ω. Hence, even

if we modify (5) to η(t) = η̄
(
G(t)
Y (t)

)−ω
= η̄

(
(dg(t)L(t))

−ω1

(m(t)Y (t))−ω2

)
, with ω1 ∈ [0, 1) with ω2 ∈ [0, 1) and ω1 6= ω2,

on the bgp, the gap between G(t) and Y (t) is constant (and not zero as in our case for ω1 = ω1 = ω). In
other words, on the bgp, the finding that ĝ = gs remains valid even for the case that ω1 ∈ [0, 1), ω2 ∈ [0, 1)
and ω1 6= ω2.
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Proposition 5. In Appendix 8.5, it is shown that the bgp fraction of R&D labor in the

centrally planned economy is constant and given condition (29) holds, the social fraction of

R&D employed labor exceeds the fraction of R&D labor in the decentralized economy. The

bgp social fraction of R&D labor can be formally derived as

l∗n(t) = l∗n =
1

1 + (1−φ)(ξ−χκ)−χ(1−κ)ξ
(1−ξ)ξ + ξρ−n[ξ−(κ−(1−κ)ξ)χ]

g(1−ξ)ξ

. (41)

Remark 3. In Appendix 8.5 it is also verified that given the inequality (40) holds, we

have l∗ ∈ (0, 1), which is automatically fulfilled for the empirically plausible case θ > 1.

5 Rent-Seeking Government

In the preceding sections, we have contrasted the decentralized with the central planning

solution. We can interpret the social planner as a benevolent government. We found that

bgp growth rates are the same, but the allocation of the labor force between the R&D

sector and the final goods sector differs due to monopolistic competition in the decentralized

economy’s intermediate goods sector. This results in a sub-optimal overuse of data in the

decentralized economy and hence excessive surveillance activities from a social’s planner

point of view. To obtain the socially optimal labor market allocation for the decentralized

economy, a wage subsidy scheme with subsidy rate s(t) has to be imposed in the intermediate

goods sector, i.e.

pN(t)(1− ξ)ηN(t)φ(D(t))ξLN(t)−ξ = wN(t)s(t). (42)

A suited tax scheme brings down the sub-optimal use of data, and reduces surveillance

activities by altering the R&D labor share towards an optimal level. In turn, as shown by

Cong et al. (2021), a data tax addresses the miss-allocation in the labor market. This is also

the case in our model. The same applies to the taxation of the final goods market with tax

rate τ (see (11)). Hence, a tax rate greater than zero reduces welfare further. Therefore, the
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benevolent planner sets the tax rate to zero.

However, what happens with the tax rate if the government is self-interested, and how

does this impact the economy? Allen (2011, p. 15) notes that “economic success is the

result of secure property rights, low taxes, and minimal government. Arbitrary government

is bad for growth because it leads to high taxes [...] and rent-seeking.” In the context of

our model, the tax rate τ(t) can be interpreted as a characteristic of an authoritarian state,

where self-interested elites control the government and use tax revenues as an additional

source for financing surveillance activities in order to consolidate their hold on power (see

11). For simplicity, we first assume that the elites are myopic and have a static objective

function:

W (t) = ι ln[τY (t)] + (1− ι) ln[c(t)], (43)

where ι ∈ [0, 1] reflects the weight that the elites place on surveillance with direct expenses

of the representative household in terms of consumption loss. We proceed by showing that

on the bgp, consumption is a constant fraction of output:

c(t)

y(t)
= [1− τ ]

[
1− α2 − ξ(1− α)(1− β)

(1− ξ)

(
ln(t)

ly(t)

)]
︸ ︷︷ ︸

>0

, (44)

as ln(t)
ly(t)

is constant on the bgp. The latter results help to ensure that the bgp tax rate that

is chosen by the myopic government is constant. Next, substitution of (44) and (19) in (43),

and after having dropped all exogenous and pre-determined variables, we have

W (t) = ι ln[τ ] + (1− ι) ln[1− τ ] +

(
α

1− α

)
ln[1− τ ]. (45)

Finally, differentiating (45) with respect to the tax rate τ yields:

τ = ι(1− α). (46)
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Thus, the tax rate chosen by the ruling elites is stationary and depends on two parameters:

first, on the ruling elites’ chosen degree ι of surveillance, and, second, on the intensity α of

intermediate goods in final good production. (46) shows that the tax rate is increasing in

the degree ι, i.e. the more important is surveillance for the ruling elites, the higher is the

chosen tax rate. Moreover, the tax rate is decreasing in α, because a larger α increases the

effect of the tax wedge on the production of intermediate goods as visualized in (18).

Now consider the case of forward-looking, dynamic optimization elites. These elites

choose τt in order to maximize

W =

∫ ∞
0

exp[−(ρ− n)t][ι ln[τY (t)] + (1− ι) ln[c(t)]dt. (47)

Again using (44) and (19) and noting the fact that the labor market outcome is not affected

by the tax rate, dropping exogenous variables, we can rewrite (47) as

W =
1

ρ− n

[
ι ln[τ ] + (1− ι) ln[1− τ ] +

(
α

1− α

)
ln[1− τ ]

]
. (48)

Hence, the tax rate that is chosen by the government under a dynamic rent-seeking regime

is the same as that under a static rent-seeking regime and given by (46). We summarize the

result with the following proposition.

Proposition 6. Under some conditions, the tax rate chosen by a myopic government

under static rent-seeking corresponds to the tax rate under dynamic rent-seeking.

Hence, if the government is benevolent, the chosen tax rate τ is zero. While a tax rate

greater than zero leaves the bgp growth rate unaffected, it nevertheless increases the R&D

labor market distortion further that already exists due to data overuse.6

6The fraction of R&D labor in the decentralized economy decreases with decreasing α. In turn, τ is increasing
with a decreasing α.
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Table 1: Summary of parameterization for the baseline economy

Variable Description Value Source
α Intensity of intermediate goods in production 1

3 Standard
ε Utility weight of governmental surveillance 0.2 Discretionary
θ Relative risk aversion of consumption in utility 2.5 Standard
ξ Contribution of data in innovation frontier 0.5 Cong et al. (2021)
χ Disutility weight of data misuse or privacy violation 1.5 Cong et al. (2021)
φ Degree of knowledge spillover in innovation frontier 0.85 Cong et al. (2021)
ρ Subjective discount factor 0.03 Standard
n Population growth rate 0.02 Standard
κ Relative disutillity from private data misuse and from governmental surveillance 0.80 Discretionary

6 Calibration

Similar to Jones (1995), in our model the sub-optimal allocation of R&D labor in the de-

centralized economy is due to monopolistic competition in the production of intermediate

goods. To compensate for the lower production and usage of intermediate goods, the final

good producers employ more labor that in turn crowds out R&D labor. However, in our

model the R&D labor market distortion is less severe than in Jones (1995), as data can

be used as a direct substitute for R&D labor to produce new algorithms. Thus, like in

Cong et al. (2021), the crowding-out of R&D labor is paralleled by a socially sub-optimal

crowding-in of data.

To obtain a better understanding of the steady-stage labor market allocations, we perform

a calibration exercise. In other words, we use calibrated values that are consistent with

the relevant literature (see table (1) for an overview) and calculate the difference between

labor that is allocated in the R&D sector between the social planner’s problem and the

decentralized economy by varying the parameter space {φ, κ, ε, ξ}7.

The result of this exercise is presented in the first row of figure (3). In this exercise,

we focus in particular on κ that weights the household’s relative disutillity from private

data misuse and from governmental surveillance.8 We find that, (i), if household’s derive

7Note that κ is calibrated in the way to insure a positive bgp growth rate (see Remark 2).

8For κ = 0 (κ = 1) household’s members suffer only from governmental surveillance (private data misuse).
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sufficient utility from governmental surveillance (high ε), the R&D misallocation of labor

tends to zero, even if households put a large weight on governmental surveillance relative

to private data misuse (small κ). The reason is that for a small κ and large ε, the social

planner optimally allocates more people in the final goods sector, thereby reducing the R&D

labor misallocation between the social planner’s solution and the solution of the decentralized

economy. On the other side, R&D labor misallocation increases with decreasing ε for constant

κ. Moreover, (ii), we also observe that R&D misallocation is particularly pronounced if the

degree of knowledge spillover φ is large and/or the importance of data for the development

of new algorithms ξ is low. Importantly, we find that for a specific combination of utility and

disutility from governmental surveillance, the decentralized labor market allocation coincides

with the social optimal allocation. Hence, if households also derive utility from governmental

surveillance, it is not necessarily the case that the decentralized data economy overuses data

at the cost of an insufficiently small R&D sector. This finding complements the work of

Cong et al. (2021).

To complement our exercise, the second row of figure (3) shows the equilibrium growth

rates of the variety of intermediate goods which can be interpreted as algorithms. These

figures confirm our findings summarized with Propositions 1 and 3. For empirically plausible

values, we find that the growth rate of intermediate goods ranges between zero and 3 percent.

7 Conclusion

In this paper, we develop a political economy model to illustrate the trade-off between

surveillance and data availability in an autocracy. As in traditional autocracies, surveillance

and repression have a negative effect on innovation, as they render scientists and researchers

less creative and productive. In modern informational autocracies, surveillance can however

also be used to gather and bundle large amounts of data, which can then be used as an

input – provided by the state – to accelerate innovation in data-intensive fields, such as
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Figure 3: Decentralized economy vs. social planner’s problem: Differences in R&D labor
allocation
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artificial intelligence. Under certain conditions, this second effect might outweigh the first

effect, rendering autocracies more productive than democracies when it comes to generating

new blueprints and applied research, for example in the form of more precise and better

performing algorithms.

Which effect ultimately prevails depends to a large extent on the future technological

evolution of the field of artificial intelligence. If the technology remains roughly at the same

level during the next couple of years, then informational autocracies such as China might

well have an advantage in the new systemic competition of the 21st century. By leveraging

large amounts of data – that might at least partially gathered through state surveillance

– they will be better able to put applied solutions to the market than democratic states,

where firms and research institutions are hampered by more restrictive data and privacy

regulations.

If, however, cutting-edge scientist in some of the leading research institutions in the world

come up with another breakthrough and paradigm shift in the field, the world’s democracies

might win the race once again, as – at least for now – most cutting-edge research institutions

in the field of AI are still located in democracies, and in particular in the United States.
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8 Appendix

8.1 Proof of Proposition 1: BGP growth rate for the decentralized economy

In this Appendix, we derive the bgp growth rates (27) and (28). In our model, there is

perfect labor mobility between final goods and the research sector. In equilibrium, mobility

between sectors comes to a halt if wN(t) = wY (t) or equivalently,

pN(t)(1− ξ)ηN(t)φ(D(t))ξLN(t)−ξ = (1− τ)(1− α)
Y (t)

LY (t)
. (49)

Next, we want to pin down the operating profits of intermediate goods producers. We

start with,

pN(t) = π(t) + ˙pN(t) (50)

which is the no-arbitrage condition that the market value of a patent pN(t) has to meet in

equilibrium. In the absence of asset price bubbles (which we assume), condition (50) says

that the market value of a patent equals the fundamental value of the patent, i.e. the present

value of the expected future accounting profits from using the new invented algorithm in the

intermediate goods sector. Hence, we have

pN(t) =

∫ ∞
t

exp[−(Γ(τ))]π(t)dτ, (51)

with Γ(τ) =
∫ τ
t
r(s)ds so that the discount rate is the market interest rate. With perfect

foresight and the absence of uncertainty, the no-arbitrage condition can be handled as a

differential equation for pN(t). The solution to the differential equation (50) is given by (51).

In bgp, interest rates are constant, i.e. r(t) = r, while the operating profits have to grow

with rate n (which becomes clear in the following analysis). Thus, (51) reduces to

pN(t) =
π(t)

r − n
, (52)
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where operating profits are obtained as

π(t) = (1− τ)(1− α)α
Y (t)

N(t)
. (53)

With a constant interest rate r, Y (t)
N(t)

grows with a constant rate n (see (19)). Thus, in

bgp, operating profits also grow with rate n (see equation (53)) as the price for blueprints

does:

pN(t) =
(1− τ)(1− α)αY (t)

(r − n)N(t)
(54)

Thus, using (54) in (49) yields:

α(1− ξ)ηN(t)φ−1(D(t))ξLN(t)−ξ =
r − n
LY (t)

. (55)

Now, we are prepared to derive the growth rate of N(t) and dc(t). Writing (55) in growth

rates gives (and assuming that r is constant on the the bgp):

(φ+ ω − 1)
Ṅ(t)

N(t)
+ ξβ

ḋc(t)

dc(t)
+ (ξ(1− β)− ω)

ḋg(t)

dg(t)
+ ω

ṁ(t)

m(t)
+ n = 0. (56)

The free-entry condition of private data (25) can be also written in growth rates, yielding

the growth rate of the price for private data sets:

ṗdc(t)

pdc(t)
= (ξβ − 1)

ḋc(t)

dc(t)
+ (φ+ ω)

Ṅ(t)

N(t)
+ (ξ(1− β)− ω)

ḋg(t)

dg(t)
+ ω

ṁ(t)

m(t)
+ n. (57)

Similarly, the free-entry condition of governmental data (26) can be written in growth rates

to obtain the growth rate of the price for governmental data sets from surveillance activities:

ṗdg(t)

pdg(t)
= (ξ(1− β)− 1− ω)

ḋg(t)

dg(t)
+ (φ+ ω)

Ṅ(t)

N(t)
+ ξβ

ḋc(t)

dc(t)
+ ω

ṁ(t)

m(t)
+ n. (58)
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Combining (25) and (26), we can re-express this relationship in growth rates as

ṗdc(t)

pdc(t)
=
ṗdg(t)

pdg(t)
+
ḋg(t)

dg(t)
− ḋc(t)

dc(t)
. (59)

As in the steady-state the data markets clear, we must have pdc(t) = pdg(t). Hence, on

the bgp, governmental data must grow with the same rate as the prices of private data.

Therefore, from (59) we find that on the bgp, the growth rates of private and governmental

data sets are equal and grow with the constant rate ĝd, i.e.

ĝd =
ḋg(t)

dg(t)
=
ḋc(t)

dc(t)
. (60)

Using (8) and (9) together with (57), we obtain

ċ(t)

c(t)
=

1

θ̃

(
ṗ(t)dc
pdc(t)

− χ

[
(κ− 1

χ
)
ḋc(t)

dc(t)
+ (1− κ)

Ġ(t)

G(t)

]
+ (1− θ)εĠ(t)

G(t)

)
(61)

Expressing G(t) in growth rates, using this and (60) in (61), and, moreover, exploiting the

fact that on the bgp, per capita consumption c(t) and N(t) grows with the same rate as ĝ,

we arrive at

ĝ[1− (1− θ)− φ+ (1− κ)χ] = [ξ − κχ]ĝd + a1n (62)

with a1 ≡ [1−ω+ (1− θ)ε−χ(1−κ)]. Note that in the absence of the government, we have

that a1 = 1.

To obtain (27) and (28) in Proposition 1, we make use of two equations, namely (56) and

(62). We have two equations with two unknowns, ĝ and ĝd. Inserting (62) in (56) delivers

(27) and (28). Moreover, from (19), we find that output grows with rate ĝ+n. Together with

the goods market clearing condition Y (t) = C(t) + G(t), this implies that C(t) = c(t)L(t)
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and G(t) have to grow with rate ĝ + n, while y(t), c(t) and N(t) each grow with the rate ĝ.

8.2 Proof of Remark 2: Existence of the bgp

To make sure that a bgp exists, two conditions have to be fulfilled. The first has to make

sure that ĝ > 0 which is satisfied as long as the parameter restriction (29) is fulfilled. The

second condition requires that the bgp growth rate also satisfies the transversality condition

(10) under balanced growth. Along the bgp, (10) considerably simplifies. As along as long as

r > ĝ+n, along the bgp, (10) is satisfied. On the bgp, using (8) we find that θĝ+ρ = r−n.

This implies that as long as ρ > ĝ(1− θ) the bgp growth rate (27) derived with Proposition

1 fulfills the tvc. For the empirically plausible value θ > 1 condition ρ > ĝ(1 − θ) is

automatically satisfied as ρ > 0. Hence, for θ > 1 the bgp growth rate (27) is unique and

exists as long as the parameter restriction (29) holds.

8.3 Proof of Proposition 2: BGP labor allocations for the decentralized econ-

omy

We start with the insight that the ratios employed in the final goods and research sectors

are constant on the bgp. The proof is simple. Using the full employment condition, we

have LY (t) = L(t) − LN(t) or expressed in ratios lY (t) = 1 − ln(t) with LY (t) = ly(t)L(t)

and LN = ln(t)L(t). If on the bgp, ly(t) and/or ln(t) grow with a constant rate (as other

endogenous variables do), it might be that ly(t) become larger than one. On contrary, if one

of the fractions grow with a negative rate on the bgp, the fractions might reach zero (or even

become negative), which implies that all people work either in the final goods sector but do

not innovate, or all people innovate but do not produce any final goods. These scenarios

obviously contradicts with Proposition 1. Hence, to ensure that both sectors can produce on

the bgp, wages have to equalize across sectors and this implies that the fractions ly(t) and

ln(t) have to be constant on the bgp.

Next, we determine the constant fractions of the research and final goods sectors for the

decentralized economy. Using the full employment condition LY (t) = L(t) − LN(t) in (49)
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together with (53) and (54) delivers on the bgp

LY (t)α(1− ξ)g∗ = (r − n)LN(t),

α(1− ξ)g∗
(

LY (t)

L(t)− LY (t)

)
= r − n. (63)

Moreover, inserting (63) in (8), on the bgp, we find

g∗ =
1

θ̃

[
α(1− ξ)g∗

(
LY (t)

L(t)− LY (t)

)
− ρ+ (1− θ)ε (g∗d + n)

]
⇒ ln(t) ≡ LR(t)

L(t)
= l̂n =

α(1− ξ)[
g∗d+n−g∗

g∗

]
ε(θ − 1) + θ + α(1− ξ) + ρ

g∗

, (64)

where g∗ is given by (27) and g∗d by (28). Finally, l̂y = 1− l̂n.

8.4 Proof of Proposition 3: Bgp growth rates for the socially planned economy

The corresponding current-value Hamiltonian for the social planner’s problem is given by

H(dc(t), G(t), N(t), ln(t)λ1(t), λ2(t)) :=

[
[G(t)εc(t)1−ε]1−θ

1− θ
− ι[dc(t)κG(t)1−κ]χ

]
+ λ1(t)

[(α
r

) α
1−α

(1− α)N(t)ly(t)− c(t)− G(t)

L(t)

]
(65)

+ λ2(t)

 η̄ [ G(t)

L(t)(1− ln(t))
(
α
r

) α
1−α

]−ω
Nω+φ[dc(t)

β(m(t)G(t))1−β ]ξln(t)1−ξL(t)


The derivation of the necessary first order conditions is straightforward and skipped here in

order to safe space9. We proceed by showing with a brief sketch that the bgp growth rate of

the decentralized economy corresponds to the bgp growth rate of the centralized economy.

Writing the necessary first order condition for consumption c(t) in growth rates yields

(1− θ)

[
ε
Ġ(t)

G(t)
+ (1− ε) ċ(t)

c(t)

]
=
λ̇1(t)

λ1(t)
+
ċ(t)

c(t)
(66)

9Details are of course available upon request from the authors.
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Moreover, reformulating the necessary first order condition for ln(t) in growth rates, we arrive

at
λ̇1(t)

λ1(t)
=
λ̇2(t)

λ2(t)
. (67)

Thus, on the bgp, the shadow prices grow with the same rate. Next, writing the necessary

first order condition for G(t) or dc(t) in growth rates, using (67) in (66), we arrive at a bgp

growth rate g∗ that is identical to the bgp growth rate ĝ given in (27). Using the necessary

first order conditions for N(t) and ln(t), on the bgp, we obtain

g∗d =
1− φ
ξ

g∗ − n

ξ

which is obviously identical to the first line given in (28). Thus, also the social bgp growth

rate of data sets is identical to those derived for the decentralized economy.

8.5 Proof of Proposition 4: BGP labor allocations for the socially planned

economy

We first assume that ln(t) and ly(t) are constant on the bgp (guess and verify). Solving the

necessary first order condition of ln(t) = ln for the fraction of shadow prices λ1(t)
λ2(t)

, inserting

this expression in the the necessary first order conditions for N(t) yields on the bgp:

g∗l−11 [φln + (1− ln)(1− ξ] =
λ̇2(t)

λ2(t)
+ ρ− n. (68)

Next, using the necessary first order condition for G(t) or dc(t), turning them in growth

rates, and make use of the resulting expression in (68) in order to eliminate the growth rate

of the shadow price. Finally, using first line given in (28), on the bgp we have

g∗ [(1− ξ)(1− ln) + lnχ(1− κ)] = ln

[
(ξ − κχ)

(
g∗(1− φ)

ξ
− n

ξ

)
+ ρ− nχ(1− κ)

]
. (69)
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Finally, inserting (27) in this expression, after solving for ln yields expression (41) in the

text. Hence, we have verified that ln and ly are indeed constant on the bgp.
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